180 research outputs found

    Face Coding Is Bilateral in the Female Brain

    Get PDF
    Background: It is currently believed that face processing predominantly activates the right hemisphere in humans, but available literature is very inconsistent. Methodology/Principal Findings: In this study, ERPs were recorded in 50 right-handed women and men in response to 390 faces (of different age and sex), and 130 technological objects. Results showed no sex difference in the amplitude of N170 to objects; a much larger face-specific response over the right hemisphere in men, and a bilateral response in women; a lack of face-age coding effect over the left hemisphere in men, with no differences in N170 to faces as a function of age; a significant bilateral face-age coding effect in women. Conclusions/Significance: LORETA reconstruction showed a significant left and right asymmetry in the activation of the fusiform gyrus (BA19), in women and men, respectively. The present data reveal a lesser degree of lateralization of brain functions related to face coding in women than men. In this light, they may provide an explanation of the inconsistencies in the available literature concerning the asymmetric activity of left and right occipito-temporal cortices devoted to fac

    Gender and Weight Shape Brain Dynamics during Food Viewing

    Get PDF
    Hemodynamic imaging results have associated both gender and body weight to variation in brain responses to food-related information. However, the spatio-temporal brain dynamics of gender-related and weight-wise modulations in food discrimination still remain to be elucidated. We analyzed visual evoked potentials (VEPs) while normal-weighted men (n = 12) and women (n = 12) categorized photographs of energy-dense foods and non-food kitchen utensils. VEP analyses showed that food categorization is influenced by gender as early as 170 ms after image onset. Moreover, the female VEP pattern to food categorization co-varied with participants' body weight. Estimations of the neural generator activity over the time interval of VEP modulations (i.e. by means of a distributed linear inverse solution [LAURA]) revealed alterations in prefrontal and temporo-parietal source activity as a function of image category and participants' gender. However, only neural source activity for female responses during food viewing was negatively correlated with body-mass index (BMI) over the respective time interval. Women showed decreased neural source activity particularly in ventral prefrontal brain regions when viewing food, but not non-food objects, while no such associations were apparent in male responses to food and non-food viewing. Our study thus indicates that gender influences are already apparent during initial stages of food-related object categorization, with small variations in body weight modulating electrophysiological responses especially in women and in brain areas implicated in food reward valuation and intake control. These findings extend recent reports on prefrontal reward and control circuit responsiveness to food cues and the potential role of this reactivity pattern in the susceptibility to weight gain

    Food color is in the eye of the beholder: the role of human trichromatic vision in food evaluation

    Get PDF
    Non-human primates evaluate food quality based on brightness of red and green shades of color, with red signaling higher energy or greater protein content in fruits and leafs. Despite the strong association between food and other sensory modalities, humans, too, estimate critical food features, such as calorie content, from vision. Previous research primarily focused on the effects of color on taste/flavor identification and intensity judgments. However, whether evaluation of perceived calorie content and arousal in humans are biased by color has received comparatively less attention. In this study we showed that color content of food images predicts arousal and perceived calorie content reported when viewing food even when confounding variables were controlled for. Specifically, arousal positively co-varied with red-brightness, while green-brightness was negatively associated with arousal and perceived calorie content. This result holds for a large array of food comprising of natural food - where color likely predicts calorie content - and of transformed food where, instead, color is poorly diagnostic of energy content. Importantly, this pattern does not emerged with nonfood items. We conclude that in humans visual inspection of food is central to its evaluation and seems to partially engage the same basic system as non-human primates

    Increased Activity Imbalance in Fronto-Subcortical Circuits in Adolescents with Major Depression

    Get PDF
    BACKGROUND: A functional discrepancy exists in adolescents between frontal and subcortical regions due to differential regional maturational trajectories. It remains unknown how this functional discrepancy alters and whether the influence from the subcortical to the frontal system plays a primacy role in medication naïve adolescent with major depressive disorder (MDD). METHODOLOGY/PRINCIPAL FINDINGS: Eighteen MDD and 18 healthy adolescents were enrolled. Depression and anxiety severity was assessed by the Short Mood and Feeling Questionnaire (SMFQ) and Screen for Child Anxiety Related Emotional Disorders (SCARED) respectively. The functional discrepancy was measured by the amplitude of low-frequency fluctuations (ALFF) of resting-state functional MRI signal. Correlation analysis was carried out between ALFF values and SMFQ and SCARED scores. Resting brain activity levels measured by ALFF was higher in the frontal cortex than that in the subcortical system involving mainly (para) limbic-striatal regions in both HC and MDD adolescents. The difference of ALFF values between frontal and subcortical systems was increased in MDD adolescents as compared with the controls. CONCLUSIONS/SIGNIFICANCE: The present study identified an increased imbalance of resting-state brain activity between the frontal cognitive control system and the (para) limbic-striatal emotional processing system in MDD adolescents. The findings may provide insights into the neural correlates of adolescent MDD

    Mental Health Diagnoses and Utilization of VA Non-Mental Health Medical Services Among Returning Iraq and Afghanistan Veterans

    Get PDF
    Over 35% of returned Iraq and Afghanistan veterans in VA care have received mental health diagnoses; the most prevalent is post-traumatic stress disorder (PTSD). Little is known about these patients’ use of non-mental health medical services and the impact of mental disorders on utilization. To compare utilization across three groups of Iraq and Afghanistan veterans: those without mental disorders, those with mental disorders other than PTSD, and those with PTSD. National, descriptive study of 249,440 veterans newly utilizing VA healthcare between October 7, 2001 and March 31, 2007, followed until March 31, 2008. We used ICD9-CM diagnostic codes to classify mental health status. We compared utilization of outpatient non-mental health services, primary care, medical subspecialty, ancillary services, laboratory tests/diagnostic procedures, emergency services, and hospitalizations during veterans’ first year in VA care. Results were adjusted for demographics and military service and VA facility characteristics. Veterans with mental disorders had 42–146% greater utilization than those without mental disorders, depending on the service category (all P < 0.001). Those with PTSD had the highest utilization in all categories: 71–170% greater utilization than those without mental disorders (all P < 0.001). In adjusted analyses, compared with veterans without mental disorders, those with mental disorders other than PTSD had 55% higher utilization of all non-mental health outpatient services; those with PTSD had 91% higher utilization. Female sex and lower rank were also independently associated with greater utilization. Veterans with mental health diagnoses, particularly PTSD, utilize significantly more VA non-mental health medical services. As more veterans return home, we must ensure resources are allocated to meet their outpatient, inpatient, and emergency needs

    Effects of Transcranial Direct Current Stimulation on Episodic Memory Related to Emotional Visual Stimuli

    Get PDF
    The present study investigated emotional memory following bilateral transcranial electrical stimulation (direct current of 1 mA, for 20 minutes) over fronto-temporal cortical areas of healthy participants during the encoding of images that differed in affective arousal and valence. The main result was a significant interaction between the side of anodal stimulation and image emotional valence. Specifically, right anodal/left cathodal stimulation selectively facilitated the recall of pleasant images with respect to both unpleasant and neutral images whereas left anodal/right cathodal stimulation selectively facilitated the recall of unpleasant images with respect to both pleasant and neutral images. From a theoretical perspective, this double dissociation between the side of anodal stimulation and the advantage in the memory performance for a specific type of stimulus depending on its pleasantness supported the specific-valence hypothesis of emotional processes, which assumes a specialization of the right hemisphere in processing unpleasant stimuli and a specialization of the left hemisphere in processing pleasant stimuli. From a methodological point of view, first we found tDCS effects strictly dependent on the stimulus category, and second a pattern of results in line with an interfering and inhibitory account of anodal stimulation on memory performance. These findings need to be carefully considered in applied contexts, such as the rehabilitation of altered emotional processing or eye-witness memory, and deserve to be further investigated in order to understand their underlying mechanisms of action

    Cerebral activations during viewing of food stimuli in adult patients with acquired structural hypothalamic damage: A functional neuroimaging study

    Get PDF
    BACKGROUND/OBJECTIVES: Obesity is common following hypothalamic damage due to tumours. Homeostatic and non-homeostatic brain centres control appetite and energy balance but their interaction in the presence of hypothalamic damage remains unknown. We hypothesized that abnormal appetite in obese patients with hypothalamic damage results from aberrant brain processing of food stimuli. We sought to establish differences in activation of brain food motivation and reward neurocircuitry in patients with hypothalamic obesity (HO) compared with patients with hypothalamic damage whose weight had remained stable. SUBJECTS/METHODS: In a cross-sectional study at a University Clinical Research Centre, we studied 9 patients with HO, 10 age-matched obese controls, 7 patients who remained weight-stable following hypothalamic insult (HWS) and 10 non-obese controls. Functional magnetic resonance imaging was performed in the fasted state, 1 h and 3 h after a test meal, while subjects were presented with images of high-calorie foods, low-calorie foods and non-food objects. Insulin, glucagon-like peptide-1, Peptide YY and ghrelin were measured throughout the experiment, and appetite ratings were recorded. RESULTS: Mean neural activation in the posterior insula and lingual gyrus (brain areas linked to food motivation and reward value of food) in HWS were significantly lower than in the other three groups (P=0.001). A significant negative correlation was found between insulin levels and posterior insula activation (P=0.002). CONCLUSIONS: Neural pathways associated with food motivation and reward-related behaviour, and the influence of insulin on their activation may be involved in the pathophysiology of HO.International Journal of Obesity advance online publicatio

    Gender differences in hemispheric asymmetry for face processing

    Get PDF
    BACKGROUND: Current cognitive neuroscience models predict a right-hemispheric dominance for face processing in humans. However, neuroimaging and electromagnetic data in the literature provide conflicting evidence of a right-sided brain asymmetry for decoding the structural properties of faces. The purpose of this study was to investigate whether this inconsistency might be due to gender differences in hemispheric asymmetry. RESULTS: In this study, event-related brain potentials (ERPs) were recorded in 40 healthy, strictly right-handed individuals (20 women and 20 men) while they observed infants' faces expressing a variety of emotions. Early face-sensitive P1 and N1 responses to neutral vs. affective expressions were measured over the occipital/temporal cortices, and the responses were analyzed according to viewer gender. Along with a strong right hemispheric dominance for men, the results showed a lack of asymmetry for face processing in the amplitude of the occipito-temporal N1 response in women to both neutral and affective faces. CONCLUSION: Men showed an asymmetric functioning of visual cortex while decoding faces and expressions, whereas women showed a more bilateral functioning. These results indicate the importance of gender effects in the lateralization of the occipito-temporal response during the processing of face identity, structure, familiarity, or affective content
    corecore